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Abstract

This paper describes an approach for automatic scoring of pronunciation quality for non-native speech. It is applicable
regardless of the foreign language student’s mother tongue. Sentences and words are considered as scoring units. Addition-
ally, mispronunciation and phoneme confusion statistics for the target language phoneme set are derived from human
annotations and word level scoring results using a Markov chain model of mispronunciation detection. The proposed
methods can be employed for building a part of the scoring module of a system for computer assisted pronunciation train-
ing (CAPT). Methods from pattern and speech recognition are applied to develop appropriate feature sets for sentence and
word level scoring. Besides features well-known from and approved in previous research, e.g. phoneme accuracy, posterior
score, duration score and recognition accuracy, new features such as high-level phoneme confidence measures are identi-
fied. The proposed method is evaluated with native English speech, non-native English speech from German, French, Jap-
anese, Indonesian and Chinese adults and non-native speech from German school children. The speech data are annotated
with tags for mispronounced words and sentence level ratings by native English teachers. Experimental results show, that
the reliability of automatic sentence level scoring by the system is almost as high as the average human evaluator. Further-
more, a good performance for detecting mispronounced words is achieved. In a validation experiment, it could also be
verified, that the system gives the highest pronunciation quality scores to 90% of native speakers’ utterances. Automatic
error diagnosis based on a automatically derived phoneme mispronunciation statistic showed reasonable results for five
non-native speaker groups. The statistics can be exploited in order to provide the non-native feedback on mispronounced
phonemes.
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1. Introduction

Systems for computer assisted language learning (CALL) are intended to provide learners of a second lan-
guage a medium to improve their skill in a foreign language without the presence of a human teacher. While
self-study in grammar or vocabulary can be successful, feedback is especially important for pronunciation
training (Neri et al., 2002b). From a pedagogical point of view, a system for computer assisted pronunciation
training (CAPT) should provide the student an overall assessment of pronunciation quality to verify correct-
ness, pinpoint certain rather than highlight all mistakes, and possibly suggest a remedy (Neri et al., 2002a). In
order to provide feedback without human assistance, methods for automatically scoring the pronunciation
quality at different levels of granularity are required. This paper presents a pronunciation scoring method
applicable independently of the non-native’s first language. The focus is on technological aspects of scoring
the pronunciation quality of words and sentences. Furthermore, a method to derive feedback about mispro-
nunciations at the phoneme level from word level scoring is proposed and explained using examples from five
non-native speaker groups.

Research on pronunciation scoring has been carried out for the phoneme (Witt and Young, 2000), sentence
(Neumeyer et al., 2000; Franco et al., 2000; Teixeira et al., 2000) and speaker level (Bernstein et al., 1990;
Minematsu, 2004). Prevalent are approaches based on speech recognition technology. Features describing
the pronunciation quality are extracted from the output of a speech recognizer, in particular forced-alignment
and recognition result. Examples for features are the posterior probability of phonemes, phoneme model like-
lihood, duration score, rate of speech, recognition accuracy and duration of pauses. To extract these so-called
pronunciation features, the reference transcription, an acoustic model and duration statistic for each phoneme
of the target language, and possibly a language model for recognition are required.

To validate an automatic scoring result, a human reference is required. Such a reference can be obtained by
a human evaluation of non-native speech material. Examples for an evaluation on phoneme and sentence level
can be found in literature: sentences are labeled on a discrete scale (e.g. from 1 to 5) indicating an utterance’s
overall pronunciation quality (Cucchiarini et al., 2000); phonemes are classified either as correctly pronounced
or as mispronounced (Witt and Young, 2000).

An approach for sentence (and speaker) level scoring in case the spoken text is unknown is proposed in
Moustroufas and Digalakis (2007). It requires an additional acoustic and (phoneme) language model for each
possible first language of the non-native.

Speaker-level scoring may be appropriate to determine the overall pronunciation skill of a non-native
speaker, e.g. in language testing applications. Scoring at the sentence level provides an immediate assessment
of overall utterance correctness. By averaging the scores of utterances over fixed time intervals, the foreign
language student’s overall progress can be measured. However, in order to provide the learner a more detailed
feedback on certain mistakes in pronunciation, scoring should also be carried out at the word or phoneme
level. Although immediate feedback at the phoneme level is important, there are several reasons to consider
also direct pronunciation assessments at the word level. The reliability of human ratings and scores decreases
the finer the level of granularity, since shorter speech segments contain less information. Furthermore, mispro-
nunciations may not only arise from the incapability of the non-native to articulate speech sounds which are
not part of his native language, but they may also rely on phonetic contexts not occurring in the speaker’s
native language and mistakes in transferring a given grapheme sequence into the correct phoneme sequence
due to phonotactical rules which are not used in the target language.

In this paper, an approach for pronunciation scoring independent of the learner’s first language is proposed
and evaluated. Although the target language is English, the proposed methods can easily be applied to differ-
ent target languages as long as reference speech data are available. The main investigation target is the detec-
tion of mispronounced words, since only little work has been done on scoring the pronunciation of words
directly. A set of word level features is developed by applying sentence level features, applying confidence mea-
sures and combining phoneme level features.

Furthermore, a data-driven approach for automatic error diagnosis is investigated. In comparison to
knowledge-based approaches (Herron et al., 1999; Tsubota et al., 2002; Park and Rhee, 2004; Ito et al.,
2005) it has the advantage of being in principle independent from the non-native’s first language. It is shown
that detailed feedback about mispronounced phonemes can be derived using the word level scoring result.
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Using a Markov chain model of mispronunciation detection, the mispronunciation probability of phonemes
are estimated from a statistic of mispronounced words. Findings from automatically derived statistics about
phoneme mispronunciations and phoneme confusions are reasonable for five groups of non-natives against
the background of phonological comparisons between the non-native’s first language and the target language.

Apart from word scoring, sentence scoring is also considered. Besides investigating an improved feature set,
a more meaningful evaluation measure is proposed. The problem when only using the correlation coefficient to
determine the parameters of a scoring function e.g. by using linear regression is that the score range and actual
score values may deviate much from the desired target.

The outline of this paper is as follows: Section 2 describes two non-native speech databases: multi-accented
English adult speech and German-accented English children speech. The annotations of the databases are ana-
lyzed for various aspects, e.g. the inter-rater reliability at word, sentence and speaker level in Section 3. Sen-
tence level scoring is considered in Section 4, word level scoring in Section 5. Experimental conditions are
explained in Section 6. Experimental results for both databases and word and sentence level scoring are given
in Section 7. In Section 8 automatic error diagnosis based on a word mispronunciation model is investigated.
From a statistic of mispronounced words, it is possible to derive feedback about mispronounced phonemes for
the foreign language student. Conclusions are drawn in Section 9.
2. Data and labels

The development of a pronunciation scoring module requires non-native speech with annotations regarding
pronunciation quality. In the following, two non-native speech databases are described: multi-accented non-
native English speech from German, French, Japanese, Indonesian and Chinese adults (ATR SLT data), and
non-native English speech from German school children (PF-STAR data). All speech data are annotated with
tags for mispronounced tokens at the word level and discrete ratings for overall pronunciation quality at the
sentence level.

If there are two or more reference labels for the same item, they have to be combined in a meaningful way.
For the sentence level this is achieved by averaging the ratings of all human evaluators. A word is considered
mispronounced if it was marked by two or more of the evaluators. Otherwise, the word’s pronunciation is
assumed to be correct.
2.1. ATR SLT non-native database

At the spoken language translation (SLT) research laboratories of ATR international a non-native English
speech database was collected (Gruhn et al., 2004). It contains foreign accented English speech from 96 non-
native English speakers. The first language of most speakers is German, French, Indonesian, Chinese and Jap-
anese. Each subject had to read the 48 phonetically rich sentences of the TIMIT (Garofolo et al., 1993) SX set,
credit card numbers and hotel reservation dialogs. Each subject was able to listen to recorded utterances. The
recording of a sentence was repeated, either if the subject was not satisfied or if the subject misread the refer-
ence sentence, but only in case of insertions or deletions of whole words. This measure assures a one-to-one
correspondence between the word sequence of the reference sentence and a student’s spoken word sequence
for proper classifier training and valid word and sentence level pronunciation scoring. Otherwise the spoken
word sequence would have to be recognized automatically which is difficult especially for non-native speech.

The phonetically rich sentences were employed for investigation of a pronunciation scoring algorithm, since
they cover all phonemes and many phoneme contexts in order to assure enough phonemic diversity. There are
4608 utterances (96 speakers times 48 sentences) corresponding to 6.4 h of non-native speech in total. The data
were divided into four speaker-disjoint subsets containing 1152 sentences each. Each subset was evaluated by
three or four native speakers with professional English teaching experience from the US and Canada. The pro-
nunciation assessments at the sentence level are on a discrete scale from ‘1’ for native-like pronunciation to ‘5’
for unintelligible pronunciation. Furthermore, words perceived as mispronounced were marked (binary label).
Table 1 shows the frequency of each reference label on word and sentence level. Most utterances are labeled ‘2’
and ‘3’, indicating most speakers have an intermediate pronunciation skill. The relative share of words



Table 1
Distribution of the reference labels at the word and the sentence level (ATR data)

Sentence Word

Label 1 2 3 4 5 Correct Mispronunciation

Frequency 382 1791 1744 623 68 34392 3528
8.3% 38.9% 37.8% 13.5% 1.5% 90.7% 9.3%

Table 2
Distribution of the reference labels at the word and the sentence level (PF-STAR data)

Sentence Word

Label 1 2 3 4 5 Correct Mispronunciation

Frequency 473 1410 458 117 61 9671 391
18.8% 56.0% 18.2% 4.6% 2.4% 96.1% 3.9%
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considered mispronounced is 10% forming a solid basis to build a scoring system which should be able to pin-
point mistakes.

Evaluators were instructed to consider segmental aspects, strong non-native accent, long between-word
pauses in their rating decision but to ignore sentence intonation. Before starting proper evaluation, each eval-
uator had to listen to a uniform set of 22 utterances from 22 non-natives. The utterances were selected in order
to have at least one representative for each foreign accent and one speaker with low, medium and high speech
recognition accuracy. This measure was intended to give the evaluators a clue for the upper and lower bound
of the rating scale.

For validation purposes, speech of seven native speakers is also available. All words in the natives’ utter-
ances are assumed to be pronounced perfectly. The data are employed to validate the automatic scoring algo-
rithm. It is expected, that the native speakers obtain scores indicating high pronunciation quality.

2.2. PF-STAR non-native database

At the Institute of Pattern Recognition, University Erlangen-Nuremberg, Germany the PF-STAR (Batliner
et al., 2005) non-native database was collected. It contains non-native English speech from 57 German chil-
dren (10–15 years of age) of two high-schools. Most of the subjects have been learning English for about six
months, all others for about eighteen months. The children read sentences from their English text book, some
phrases and isolated words. The database contains 4627 utterances (3.4 h of speech) in total.

2519 utterances of the database with annotations at the word and the sentence level are employed for exper-
iments. The PF-STAR database was collected independently from the ATR data. Word and sentence level
annotations are of the same kind as in the ATR database. The speech data were annotated by eight human
evaluators, among them three experienced and three trainee teachers of English, who are native Germans.
The evaluators were instructed to mark those mispronounced words, which they would like to correct in
the first instance.

Table 2 shows the frequency of each reference label. Most utterances are rated ‘2’ or ‘3’ being similar to
ATR data. The percentage of words considered mispronounced was approx. 4%, which is less than half in
comparison to ATR data.

3. Analysis of the human evaluation

For evaluating the inter-rater reliability of the pronunciation labels at word, sentence and speaker level, the
correlation coefficient CðX ; Y Þ is employed. It is defined as
CðX ; Y Þ ¼
Pn

i¼1ðxi � lX Þðyi � lY ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � lX Þ

2Pn
i¼1ðyi � lY Þ

2
q ð1Þ
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where the values xi; yi of the random variables X,Y are corresponding pronunciation annotations for the same
item (e.g. sentence) with index i assigned by two human raters X and Y. lX denotes the mean of random var-
iable X. To account for the ratings of three or more human evaluators, the open correlation for each human
evaluator X j is used additionally. It is defined as the correlation between one random variable and the average
of the remaining variables if there are k P 3 human evaluators in total
Table
Minim
speake

Level

Word
Senten
Speake

Table
Relatio

# Mar

Rating
Rating
Rating
Rating
Rating

Each v
CopenðX jÞ ¼ C X j;
1

k � 1

X
i6¼j

X i

 !
ð2Þ
3.1. ATR data

Table 3 shows the results of the human evaluation for both reliability measures at each level of granularity.
Speaker level ratings were obtained by averaging all sentence ratings available for a speaker. It is obvious, that
the higher the level of assessment, the higher the reliability. This is natural, since the rating decision of an eval-
uator is based on more speech material.

There have been a few evaluator pairs with a low correlation at the word and sentence level. This is due to
the subjectiveness of each evaluator. The strictness of an evaluator is a characteristic element of subjectiveness.
For example, in case of the evaluator pair with the lowest correlation (0.16) at the word level, one evaluator
only marked 2%, but the other as much as 28% of the words. For the pair with highest correlation (0.52) the
corresponding evaluators marked 12% and 14% of the words, respectively. The same applies to the sentence
level, since there is a relationship between the average number of marked words and the sentence level rating
(Table 4). The correlation between the number of marked words in a sentence and the corresponding sentence
rating was 0.63 on average.

Additional statistics can be derived from the pronunciation labels. As Fig. 1 shows, the higher the number
of phonemes in a word, the higher the relative marking frequency. This is easy to understand, since an eval-
uator may mark a word if there is at least one mispronounced phoneme and the possibility for mispronunci-
ation increases with the number of phonemes. The words ‘extra’, ‘exposure’, ‘exam’ and ‘box’ in every
speaker’s material were considered as mispronounced by every evaluator. Other mispronounced words, which
had a relative marking frequency greater than 0.75, were ‘mirage’, ‘centrifuge’, ‘bugle’, ‘frantically’, ‘oasis’ and
‘purchase’.
3
um, average and maximum of pair-wise inter-rater correlation and the open inter-rater open correlation on word, sentence and
r level (ATR data)

Correlation Open correlation

Minimum Average Maximum Minimum Average Maximum

0.16 0.34 0.52 0.27 0.44 0.57
ce 0.28 0.49 0.65 0.44 0.60 0.70
r 0.85 0.91 0.97 0.88 0.94 0.98

4
nship between the sentence rating and the number of marked words in the sentence

ked words 0 1 2 3 4 P 5

1 0.96 0.04 0.00 0.00 0.00 0.00
2 0.70 0.28 0.02 0.00 0.00 0.00
3 0.30 0.44 0.21 0.04 0.01 0.00
4 0.09 0.27 0.37 0.19 0.07 0.01
5 0.00 0.06 0.17 0.33 0.35 0.10

alue means the relative frequency of sentences with a certain rating and a certain number of words marked (ATR data).
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Fig. 1. Relationship between the number of phonemes in a word and its relative marking frequency (ATR data).

Table 5
Pair-wise inter-rater correlation and open inter-rater correlation on word level (PF-STAR data)

Level Correlation Open correlation

Minimum Average Maximum Minimum Average Maximum

Word 0.28 0.41 0.56 0.47 0.59 0.67
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3.2. PF-STAR data

Mispronounced words were marked by eight human evaluators. There is a correlation of 0.5 between the
number of marked words and the sentence level ratings. The minimum, maximum and average correlation
between word level annotations of each rater pair and the open correlation are shown in Table 5. The average
inter-rater correlation is higher than for the ATR data. One reason is, that the strictness among the evaluators
of the PF-STAR data was almost uniform (about 4% marked). Another reason might be the fact that the PF-
STAR data are from a homogenous speaker group (German school children) and most of the annotators
know each other and presumably some of the non-native subjects (English teachers from the same school
as the non-native children). The ATR database contains multi-accented non-native speech data from subjects
a priori unknown to the evaluators.

Three teachers evaluated the same material twice. Their intra-rater correlation is 0.56, 0.59 and 0.63, respec-
tively, higher than the average inter-rater correlation.

Examples of words with a mispronunciation probability equal or greater than 0.75, are ‘hotel’, ‘intelligent’,
‘casual’, ‘example’, ‘fortunately’, ‘comprehensive’, ‘transparent’, ‘garage’ and ‘confusion’.

4. Sentence scoring

Besides employing sentence level features from literature, several features are modified and some new fea-
tures are proposed. The feature extraction is based on the forced-alignment and the phoneme recognition out-
put of the target utterance with an acoustic model trained on native speech. This native speech serves as
reference material for the desired quality and characteristics of pronunciation.

4.1. Sentence level pronunciation features

In Table 6 variables and symbols used in feature definitions are summarized. Feature extraction is carried
out separately for each sentence~S. A sentence can be said to consist of either N phoneme segments or M word
segments, which are also made up of phoneme segments. It is assumed, that there are no intra-word pauses,



Table 6
Definition of variables and symbols for sentence level pronunciation features

Entity Symbol Definition

Sentence ~S Word sequence ðW 1; . . . ;W M Þ
Phoneme sequence ðp1; . . . ; pN Þ
Phoneme segments ð~X 1; . . . ; ~X N Þ

Segment ~X Frame sequence ð~x1; . . . ;~xT Þ
Frame ~x Acoustic features ðx1; . . . ; xdÞ
Duration T Phoneme segment duration (~X )

D Word segment duration (W)
T S Total sentence duration

# Phonemes N Num. of phoneme segments in ~S
# Words M Num. of word segments in ~S

Speaking rate RðphÞ # Phonemes (N)/time (T S)
RðwdÞ # Words (M)/time (T S)

T. Cincarek et al. / Computer Speech and Language 23 (2009) 65–88 71
but only inter-word pauses. The duration of a phoneme segment ~X i with label pi is denoted as T i. Word dura-
tions are denoted as Dj. The total duration T S of a sentence is defined as the duration of all phonemes plus
inter-word pauses in the sentence. Leading and trailing silence segments are ignored. The rate of speech
(ROS) is a measure of the speaking rate. It can be defined as the number of phonemes, syllables or words
per time.

The rate of speech can be used as pronunciation feature. However, experiments revealed that there is a
higher correlation for the reciprocal phoneme-based rate of speech, i.e. the mean phoneme duration
ðMeanPhDurÞ R ¼ 1

RðphÞ ð3Þ
Another feature is the duration score (Neumeyer et al., 2000) to measure deviations from the duration char-
acteristics typical for native speech. The score is calculated as the sum of the sentence’s phoneme models’ dura-
tion log-likelihood
ðDurScoreÞ D ¼ 1

N

XN

i¼1

log P ðphÞ
dur ðT i � RðphÞjpiÞ ð4Þ
A phoneme duration probability density function (pdf) can be estimated from transcribed native speech data.
Instead of approximating the pdf with a histogram, the log-normal density function
P ðphÞ
dur ðtjpÞ ¼

1

t
ffiffiffiffiffiffiffiffiffiffi
2pr2

p

q exp �ðlog t � mpÞ2

2r2
p

" #
ð5Þ
is employed, since phoneme durations are distributed log-normal. The parameters mp and rp are obtained by
maximum-likelihood estimation based on ROS-normalized duration samples for each phoneme. This normal-
ization is necessary in order to account for variations of the speaking rate.

The acoustic model likelihood Lð~X Þ ¼ log P ð~X jkpÞ can be considered as a measure of acoustic similarity
between the target speech and the context-independent acoustic model kp for phoneme p. Here, the original
definition of the likelihood-based pronunciation feature (Neumeyer et al., 2000) is modified by additionally
normalizing with the rate of speech, since the correlation to human ratings increased further
ðSentLh1Þ L ¼ 1

N

XN

i¼1

Lð~X iÞ
T i � RðphÞ ð6Þ
To calculate feature L, each segment’s likelihood is divided by its actual duration. Alternatively, normaliza-
tion is possible by dividing with the expected (phoneme or word) duration. This is realized for the following
new pronunciation feature:
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ðSentLh2Þ E ¼ 1

M

XM

j¼1

LðW jÞ
DðeÞj � RðwdÞ

ð7Þ
LðW jÞ denotes the sum of phoneme model log-likelihoods of word W j. An estimate for the expected word
duration DðeÞj is the sum of the mean duration of the phonemes of word W j.

Besides the phoneme likelihood, the phoneme posterior probability P ðpij~X Þ is a promising pronunciation
feature. In (Neumeyer et al., 2000) it was shown to be the feature with highest correlation to human ratings.
Its calculation was simplified to the likelihood ratio
LrðX ijpiÞ ¼
XT i

t¼1

log
P ð~xtjpiÞ
P ð~xtjq�t Þ

ð8Þ
where q�t is the name of the model with highest likelihood given frame~xt, i.e. q�t ¼ argmaxq2QP ð~xtjqÞ. Q is the
phoneme set of the target language. In practice, qt was obtained by unconstrained phoneme recognition. Thus
a likelihood ratio score was obtained for each phoneme segment. These scores are normalized by the actual
segment duration, summed up and finally divided by the number of segments N. Here, the feature is modified
to
ðLhRatioÞ K ¼
PN

i¼1Lrð~X iÞPN
i¼1T ðeÞi � RðphÞ

ð9Þ
i.e. normalizing the segments posterior scores by the product of the speaking rate and the expected segment
duration T ðeÞ, since the correlation to human ratings increased further.

An indicator of how good an utterance can be recognized is the phoneme or word accuracy. The former is a
better measure, since it is based on a larger number of tokens. The accuracy can be calculated as the normal-
ized minimum-edit-distance
ðPhAccÞ A ¼MinEditDistð~q;~pÞ
maxfj~qj; j~pjg ð10Þ
The distances of insertions, deletions and substitutions are uniformly set to one. j~pj means the number of pho-
nemes in the phoneme reference vector~p �~q denotes the phoneme recognition hypothesis. A is zero if reference
and hypothesis are identical and greater than zero, if there are recognition errors.

Being unsure about a word’s pronunciation may introduce inter-word pauses. Consequently, it is worth
considering the total duration (PauseDur) P of inter-word pauses (Teixeira et al., 2000) within a sentence
as a feature.

As a further new pronunciation feature the probability of the recognized phoneme sequence~q given an n-
gram language model (LM) is employed. The LM should be trained on canonic phoneme transcriptions of
valid sentences of the target language, because a foreign language student should acquire standard
pronunciation
ðPhSeqLhÞ M ¼ 1

RðphÞ log P ð~qjLMÞ ð11Þ
Each pronunciation feature is intended to measure certain aspects of pronunciation. R;D and P are measures
for temporal characteristics like the fluency of a speaker. L and K are intended to measure the segmental
quality. M and A can be considered as indicators for both kinds of characteristics. Other prosodic features,
e.g. based on fundamental frequency, had a rather low correlation with human ratings (Teixeira et al., 2000).

4.2. Scoring method

Fig. 2 shows the two approaches examined for sentence scoring. The Gaussian classifier with maximum
likelihood decision rule itself can provide a discrete scoring result (hard scoring). A continuous scoring result
(soft scoring) can be obtained by calculating the expected score value from the likelihood of the class models
and the class prior probabilities. The latter are considered to be distributed uniformly. Another approach for
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soft scoring is to use a linear combination of the pronunciation features. The weighting coefficients for each
feature can be estimated using linear regression.

4.3. Score adjustment

In experiments it was observed that the result of soft scoring when using a linear feature combination is
skewed. To improve scoring accuracy a linear
x ¼ gðs;~aÞ ¼ a0 þ a1s
and a multiplicative polynomial transformation
s0 ¼ x � f ðx;~bÞ ¼ b0xþ b1x2 þ b2x3 þ � � � þ bkxkþ1
can be applied in series to the raw scoring output s of the linear classifier to obtain a more accurate score s0.
The linear transformation is able to adjust the mean and the slope of the regression function, the second

transformation is employed to correct certain non-linear distortions.
The parameters~a ¼ ða0; a1Þ of the linear transformation gðs;~aÞ can be obtained by linear regression based

on the scoring result and reference labels for the training data. However, instead of estimating~a to map a score
s to its corresponding reference x, the variables s and x are interchanged, i.e. the parameters ~a0 ¼ ða00; a01Þ of
s ¼ gðx;~a0Þ are estimated. The coefficients~a of the desired linear mapping can then taken from the reciprocal
function of gðx;~a0Þ
a0 ¼ �
a00
a01

and a1 ¼
1

a01
ð12Þ
Let lh be the average score for a sentence with reference rating h. It was often the case that either lh > h, i.e.
the actual score values for tokens labeled h are too large, or lh < h, i.e. the score values were too small. In
order to bring them closer to their reference value, they have to be multiplied with a value either smaller
or larger than 1. The multipliers for the whole score range can be defined by polynome f ðx;~bÞ.

The coefficients~b ¼ ðb0; b1; . . . ; bkÞ of f can be determined using interpolation with Newton’s method. The
desired multiplicative transformation is the polynome f fitting through the k points h; h

lh

� �
.

5. Word classification

Mispronounced words could be detected using a continuous word score as in sentence scoring and a thresh-
old to decide on mispronunciations. Since the purpose is in the end to discriminate correctly pronounced
words (correct) from mispronounced words (wrong), the issue is considered as a two-class classification prob-
lem in the following.

5.1. Word level pronunciation features

Any feature defined for the sentence level can be applied to the word level in principle, since sentences con-
sisting of only one word are valid. However, preliminary investigations revealed, that features with high qual-
ity for the sentence level are not necessarily good for the word level. Table 7 briefly explains variables and
symbols employed for feature definitions.



Table 7
Definition of variables and symbols for word level pronunciation features

Entity Symbol Definition

Word sequence ~W Word labels ðW 1; . . . ;W M Þ
~O Acoustic observation ðO1; . . . ;OM Þ

Word W Phoneme labels ðp1; . . . ; pnÞ
O Acoustic segments ð~X 1; . . . ; ~X nÞ

Phoneme segment ~X Frame sequence ð~x1; . . . ;~xT Þ
Reference labels ðp1; . . . ; pT Þ
Hypothesis labels ðq�1; . . . ; q�T Þ

# Phonemes n Number of phonemes in word W
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Instead of using a duration-normalized likelihood or the likelihood ratio, the plain sum of phoneme log-
likelihoods W1 had a higher discriminative ability. Normalization of this feature is possible by dividing with
the number of phonemes n in each word
ðWLh1Þ W1 ¼
Xn

i¼1

Lð~X iÞ; ð WLh2Þ W2 ¼
1

n
W1 ð13Þ
The sentence duration score D is a good word level feature without modifications:
ðDurS1Þ W3 ¼
Xn

i¼1

SðphÞ
dur ðT i � RðphÞjpiÞ ð14Þ
The following normalizations of W3 were advantageous in some cases:
ðDurS2Þ W4 ¼
1

n
W3; ð DurS3Þ W5 ¼W3R ð15Þ
Confidence measures showed to have the highest discrimination ability. The feature C1 is a high-level confi-
dence measure derived with the phoneme correlation technique from Cox and Dasmahapatra (2002). It is
based on the phoneme confusion matrices for correctly pronounced and mispronounced words. The confusion
probabilities are calculated at the frame level. As for the calculation of the likelihood ratio in Eq. (8) q�t de-
notes the phoneme label of the speech frame derived from unconstrained phoneme recognition. The label pt is
obtained from the forced-alignment
ðPhCfRatioÞ C1 ¼
1

D

XD

t¼1

log
P ðq�t jpt;wrongÞ
P ðq�t jpt; correctÞ ð16Þ
Another confidence measure is the word posterior probability (WPP) (Wessel et al., 2001). It measures the de-
gree to which a word recognition hypothesis can be trusted. It may be assumed, that the value of the WPP also
reflects the pronunciation quality of a word. The word level pronunciation feature C2 is based on the sentence
likelihood. It was calculated via N-best lists in order to be independent from the architecture and implemen-
tation of a speech recognizer
ðWPPÞ C2 ¼
P

~V P ð~Oj~V Þf ðW jjV iÞP
~V P ð~Oj~V Þ

ð17Þ
The summation is carried out over the word sequences ~V ¼ ðV 1; V 2; . . . ; V i; . . .Þ of each hypothesis from the N-
best list. The function f ðW jjV iÞ returns 1, if the overlapping condition for the reference word W j and a word
V i in the hypothesis is met. Otherwise its value is 0. The language model probability P ð~V Þ is not employed for
the calculation of the WPP, since the feature should only be based on acoustic evidence.

5.2. Classification method

For the discrimination of the two classes of correctly pronounced and mispronounced words the Gaussian
classifier is employed. Other methods for classification, decision trees (CART) and Gaussian mixture models
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(GMMs) after reduction of the feature space dimension with principal component analysis (PCA) could not
outperform the Gaussian classifier.

6. Experimental setup

Fig. 3 depicts the process of pronunciation feature extraction. The Hidden Markov Model toolkit (Young
et al., 2002) is employed for speech recognition. The native acoustic model is trained on about 60 h of Amer-
ican English speech from the WSJ Corpus. There is one context-independent monophone model for 44 English
phonemes and one integrated silence and short pause model. Pronunciation features are extracted from
forced-alignment and automatic speech recognition results. Phoneme and word recognition were carried
out unconstrained, i.e. a statistical language model was not employed.

Phoneme duration statistics are estimated from the TIMIT corpus (Garofolo et al., 1993). Since durations
for test sentences cannot be obtained manually and automatically computed durations differ from manual
annotation, duration statistics are calculated from the forced-alignment. The phoneme confusion matrices
for correctly pronounced and mispronounced words are estimated on the training set of the non-native speech
data. The phoneme language model (LM) to calculate the probability of recognized phoneme sequences is esti-
mated on canonic transcriptions of the SI, SA and SX sentences of the TIMIT corpus.

The training and test sets are set up to be disjoint w.r.t. the non-native speakers and the human evaluators.
There are four sets which fulfill this condition. Initial experiments are carried out with three sets for training
and one set for evaluation. Finally, 4-fold cross-validation is conducted.

In case of linear feature combination, features are selected implicitly by their weighting coefficients. For the
Gaussian classifier features selection is possible with floating search. The floating search algorithm works as
follows:

(i) Start with the empty feature set S ¼ fg.
(ii) Add the relatively best feature to S.

(iii) Remove the relatively worst feature from S, if the quality of the new feature set becomes better than the
best set S0 with jSj � 1 ¼ jS0j features so far.

(iv) Stop, if a predefined number of features is used, else go to (ii).

jSj denotes the cardinality of set S. Fig. 4 illustrates the feature selection procedure. As optimization cri-
terion the classification gain defined by the pointwise multiplication of the classifier’s confusion matrix F with
a gain matrix M is employed
Pronunciation

Feature

Extraction

Features

Acoustic Model
Native Phoneme

Bigram LM

Phoneme Recognition

Native

Statistic
Duration
Phoneme Phoneme

Confusion
Statistic

N–best Word Recognition

Forced–Alignment

Utterance

Fig. 3. Experimental setup for pronunciation feature extraction at each level of granularity.
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Fig. 4. Feature selection based on floating search.
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gðM;FÞ ¼ 1

k

Xk

i¼1

Xk

j¼1

MijF ij ð18Þ
Here, k is the number of classes, i and j are class indices. The elements F ij of matrix F denote the proba-
bilities that tokens belonging to class i are classified as class j.

For word classification experiments matrix M1 is employed. Since classifying a correctly pronounced word
as mispronounced might have negative effects on a student than vice versa, the penalty for the former confu-
sion is set higher
M1 ¼
þ1 �3

�1 þ1

� �
ð19Þ
Matrix M2 is used for sentence scoring. It is designed so that the more the scoring result deviates from the
reference rating, the lower becomes the classification gain
M2 ¼

þ1 �1 �2 �4 �8

�1 þ1 �1 �2 �4

�2 �1 þ1 �1 �2

�4 �2 �1 þ1 �1

�8 �4 �2 �1 þ1

2
6666664

3
7777775

ð20Þ
The number of samples for each sentence rating as well as the number of correctly pronounced and mis-
pronounced words was highly unbalanced. Resampling was carried out to make the number of samples equal.
As many samples as were available for the class with the largest number of samples are selected randomly with
replacement for each class.

7. Experimental results

Besides the correlation coefficient (Eq. (1)), the classification gain (Eq. (18)), the class-wise average recog-
nition rate (CL), the average recognition rate tolerating the confusion of neighbored classes (CL-1A), and the
total recognition rate (RR) are employed as performance measures. CL is defined as the sum of the diagonal of
the classifier’s confusion matrix F divided it by the number of classes. RR measures the percentage of correctly
classified items. The quality of pronunciation features is also indicated by their correlation with the human
ratings.

7.1. ATR data

7.1.1. Sentence scoring results

The performance for sentence scoring with the Gaussian classifier and linear transformation based on
single features is shown in Table 8. The best four single features are the likelihood ratio K followed by
the phoneme accuracy A, the duration score D and the likelihood score E normalized by the expected word
duration.

By applying the floating search algorithm to one training and test set combination, the feature sets as given
in Table 9 ranked by the classification gain are found. The results as given in the tables are obtained using
4-fold cross-validation.



Table 8
Result for sentence scoring based on single pronunciation features (ATR data)

Feature Gaussian classifier Linear

ID Names Corr. gðM2;FÞ CL (%) CL-1A Corr.

K (LhRatio) 0.50 �0.35 35.5 73.0 0.51

A (PhAcc) 0.44 �0.45 33.9 71.5 0.46
D (DurScore) 0.42 �0.44 32.8 69.8 0.45
E (SentLh2) 0.40 �0.47 34.0 70.0 0.44
L (SentLh1) 0.38 �0.46 31.7 69.5 0.42
M (PhSeqLh) 0.38 �0.58 32.2 65.1 0.40
R (MeanPhDur) 0.35 �0.52 30.7 67.1 0.38
P (PauseDur) 0.31 �0.85 27.1 58.2 0.34

Table 9
Result for sentence scoring with the Gaussian classifier based on multiple pronunciation features (ATR data)

Feature IDs Feature Names Corr. gðM2;FÞ CL (%) CL-1A

E;A (SentLh2,PhAcc) 0.52 �0.26 36.9 80.0
E;A;R (SentLh2,PhAcc,MeanPhDur) 0.52 �0.27 38.0 80.1

E;A;R;M (SentLh2,PhAcc,MeanPhDur,PhSeqLh) 0.52 �0.29 36.6 79.9
A;R;M;L;D (PhAcc,MeanPhDur,PhSeqLh,SentLh1,DurScore) 0.52 �0.30 35.2 78.5
A;R;M;L;D;P (PhAcc,MeanPhDur,PhSeqLh,SentLh1,DurScore,PauseDur) 0.51 �0.35 33.8 77.8
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The result for linear combination of selected feature sets is given in Table 10. The lower three sets include
features which can be calculated given only the forced-alignment. There is a remarkable increase in perfor-
mance if the features based on the recognition result are also employed (upper three sets).

Considering only the correlation coefficient, the reliability of sentence scoring by linear feature combination
is higher than when using the Gaussian classifier. However, the scoring accuracy is much worse, which is obvi-
ous when comparing the classification gain. The accuracy is improved by score adjustment with the proposed
linear and multiplicative transformation.

Table 11 shows the positive effect of score adjustment. The left matrix is the confusion matrix between ref-
erence ratings and rounded scores from the linear classifier. Scoring results ‘1’ or ‘5’ almost never occur. From
the right matrix it is clear, that score adjustment contributes remarkably to scoring precision.
Table 10
Result for sentence scoring by linear combination of multiple pronunciation features (ATR data)

Feature IDs Feature Names Raw scoring Score adjustment

Corr. gðM2;FÞ Corr. gðM2;FÞ
K;A;M;D (LhRatio,PhAcc,PhSeqLh,DurScore) 0.59 �0.66 0.59 �0.39

K;M (LhRatio,PhSeqLh) 0.56 �0.74 0.58 �0.45
K;A (LhRatio,PhAcc) 0.55 �0.70 0.55 �0.44

D;E (DurScore,SentLh2) 0.51 �0.73 0.52 �0.55

D;L;R (DurScore,SentLh1,MeanPhDur) 0.48 �0.76 0.48 �0.62
D;L (DurScore,SentLh1) 0.47 �0.75 0.47 �0.66

Table 11
Confusion matrix obtained after rounding scores from linear classifier with feature combination K;A;M;D (ATR data)

Reference Rating Without adjustment With score adjustment

1 2 3 4 5 1 2 3 4 5

1 3 82 15 0 0 52 35 12 1 0
2 0 61 38 1 0 25 39 24 10 2
3 0 35 63 2 0 11 27 34 20 9
4 0 8 72 20 0 1 8 21 31 39

5 0 0 52 48 0 0 0 4 33 63
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Table 12 compares the performance of linear feature combination and the Gaussian classifier for native and
non-native speech. In case of native speech a reference rating of’1’ is assumed for each utterance. The percent-
age of correctly classified sentences is given by the columns RR. The performance of the Gaussian classifier is
superior to linear feature combination. A feature combination with a good scoring accuracy for both native
and non-native speakers is (LhRatio) K, (PhAcc) A, (PhSeqLh) M and (DurScore) D.

7.1.2. Word classification results

Table 13 shows the accuracy for discriminating correctly pronounced words from mispronounced words
based on single pronunciation features. The best two features w.r.t. both CL and the classification gain are
the phoneme confusion ratio C1 and the word likelihood W1.

As for sentence scoring, the floating search algorithm is employed to heuristically find n-best feature sets.
The first four combinations in Table 14 are identified when using CL, the last four when using the classifica-
tion gain as optimization criterion. There was no significant increase in performance if employing five or more
features.
Table 12
Result for sentence scoring of non-native and native speech based on multiple pronunciation features (ATR data)

Speech Feature Names Native Non-Native

Classifier Linear Gaussian Gaussian

Feature IDs RR (%) RR (%) CL-1A gðM2;FÞ
K;M (LhRatio,PhSeqLh) 80.1 90.9 76.6 �0.30
K;A;M;D (LhRatio,PhAcc,PhSeqLh,DurScore) 86.6 88.5 77.5 �0.30
D;E (DurScore,SentLh2) 63.7 86.8 75.5 �0.37
E;A (SentLh2,PhAcc) 84.2 85.0 80.0 �0.26

E;A;R;M (SentLh2,PhAcc,MeanPhDur,PhSeqLh) 81.8 83.8 79.9 �0.29

Table 13
Result for word classification with the Gaussian classifier based on single pronunciation features (ATR data)

Feature IDs Feature Names CL (%) gðM2;FÞ
W3 (DurS1) 64.0 +0.16

W5 (DurS3) 61.2 +0.14
W1 (WLh1) 65.8 +0.07
C1 (PhCfRatio) 66.6 +0.06
M (PhSeqLh) 64.1 +0.06
W4 (DurS2) 58.0 +0.02
C2 (WPP) 66.0 �0.23
A (PhAcc) 64.7 �0.24
W2 (WLh2) 54.5 �0.34

Table 14
Result for word classification with the Gaussian classifier based on multiple pronunciation features (ATR data)

Feature IDs Feature Names CL (%) gðM1;FÞ
W1;C2 (WLh1,WPP) 70.7 +0.03
W1;C2;W4 (WLh1,WPP,DurS2) 71.6 +0.16
W1;C2;W4;C1 (WLh1,WPP,DurS2,PhCfRatio) 72.2 +0.18

W1;C2;W4;C1;W2 (WLh1,WPP,DurS2,PhCfRatio,WLh2) 72.1 +0.18

W3;C1 (DurS1,PhCfRatio) 68.3 +0.19
C1;W1;W5 (PhCfRatio,WLh1,DurS3) 69.0 +0.23
C1;W1;W5;A (PhCfRatio,WLh1,DurS3,PhAcc) 70.4 +0.24

C1;W1;W4;C2;W5 (PhCfRatio,WLh1,DurS2,WPP,DurS3) 69.3 +0.23
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In Table 15 the performance with four different feature combinations is compared for native and non-native
speech. More than 90% of the words uttered by natives are classified as correctly pronounced. A feature com-
bination with a good scoring accuracy for both native and non-native utterances is (PhCfRatio) C1, (WLh1)
W1, (DurS3) W5 and (PhAcc) A.

The reliability of word level mispronunciation detection can be assessed when comparing the confusion
matrix of human evaluators with the classifier’s confusion matrix. To obtain the former, the majority vot-
ing of all but one evaluator was taken as reference and tested against the decision of the remaining eval-
uator. The average performance of four reference and test combinations is shown in Table 16. There is a
disagreement about 8% of the correct words and 42% of the wrong words. From the left table it is clear,
that the detection of mispronounced works equally well by automatic classification. However, at the same
time the classification error for correctly pronounced words is about 10% higher than for the human
evaluators.

The classification accuracy for correct words can be increased at the cost of a decrease in accuracy for mis-
pronounced words. Fig. 5 shows the recall of class ‘‘correct” versus recall of class ‘‘wrong”. The performance
of the human evaluators is also indicated. From the graph it is clear, that more than 40% of the mispro-
nounced words are detected while the misclassification error for correctly pronounced words is only about
10%.
Table 15
Comparison of word classification accuracy for native and non-native speech (ATR data)

Feature Native Non-native

IDs Names RR CL (%) gðM1;FÞ
W3 (DurS1) 96.2 64.0 +0.16
W3;C1 (DurS1,PhCfRatio) 93.9 68.3 +0.19
C1;W1;W5;A (PhCfRatio,WLh1,DurS3,PhAcc) 92.9 70.4 +0.24

C1;W1;W5 (PhCfRatio,WLh1,DurS3) 90.3 69.0 +0.23

Table 16
Comparison of the confusion matrices of the human evaluators and the Gaussian classifier based on the feature set fC1;W1;W5;Ag
(ATR data)

Machine Correct Wrong Humans Correct Wrong

Correct 82.9 17.1 Correct 91.9 8.1
Wrong 42.1 57.9 Wrong 42.2 57.8
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Fig. 5. Recall for both classes of automatic method and performance of human evaluators (ATR data).
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7.2. PF-STAR data

7.2.1. Sentence scoring

In order to investigate, whether the pronunciation scoring system works also for speech with different char-
acteristics than its models are trained on, it is evaluated for the PF-STAR non-native database. The acoustic
model of the speech recognizer is the same as for experiments with ATR data, and all models of the system are
estimated on ATR non-native data.

Table 17 shows the result for sentence scoring. The best performance is achieved with the likelihood
ratio score K. There is no improvement, when employing two or more features. In comparison to
ATR data, the scoring accuracy is lower w.r.t. all performance measures. Nevertheless, scoring worked
reliably enough for at least 68.3% of the utterances, for which at most a confusion with a neighbored rat-
ing class occurred. Furthermore, it has to be taken into account, that the PF-STAR sentence ratings are
only from one human evaluator.

7.2.2. Word classification

The word scoring performance is only evaluated for feature sets with good results for ATR data. The per-
formance for the best combinations of one to four features are given in Table 19. A class-wise average recog-
nition rate (CL) of 67.4% is achieved with the features (WLh1) W1 and (WPP) C2. Table 18 shows the
confusion matrices of the human evaluators and the classifier based on this feature combination. Fig. 6 shows
the ROC curve of the classifier using this feature combination. The performance of the human evaluators is
also indicated.

Although the difference in performance between the automatic method and the humans is larger than for
ATR data, results for both sentence scoring and word classification are promising. The feature set shows a
high degree of portability despite the fact that training (ATR) and test (PF-STAR) data were collected inde-
pendently and have different characteristics: children vs. adults, single-accented vs. multi-accented and differ-
ent text material.
Table 17
Result for sentence scoring with the Gaussian classifier based on single features (PF-STAR data)

Feature IDs Feature Names gðM2;FÞ CL (%) CL-1A

K (LhRatio) �0.97 31.8 68.3
D (DurScore) �1.46 30.1 61.2

Table 19
Result for automatic word classification based on multiple pronunciation features (PF-STAR data)

Feature IDs Feature Names CL (%) gðM1;FÞ
W5 (DurS3) 59.7 +0.07
W1;C2 (WLh1,WPP) 67.4 +0.06
C1;W1;W5 (PhCfRatio,WLh1,DurS3) 64.9 +0.11
W1;C2;W4;C1 (WLh1,WPP,DurS3,PhCfRatio) 66.0 +0.05

Table 18
Comparison of the confusion matrices of the human evaluators, and the Gaussian classifier based on the feature set fW1;C2g (PF-STAR
data)

Machine Correct Wrong Humans Correct Wrong

Correct 71.4 28.6 Correct 97.9 2.1
Wrong 37.3 62.7 Wrong 55.6 44.4
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Fig. 6. Recall of both classes with the automatic method and performance of human evaluators (PF-STAR data).
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8. Automatic error diagnosis

The purpose of detecting mispronounced tokens in sentences is to identify words which require pronunci-
ation training. If the user desires more detailed feedback, it is possible to obtain information about mispro-
nounced phonemes from a statistic of mispronounced words as depicted in Fig. 7.

In the following, a model to calculate phoneme mispronunciation probabilities given a list of correctly pro-
nounced and mispronounced words is proposed. The approach is data-driven and allows the localization as
well as determination of the kind of pronunciation error without knowing the non-native’s first language.
The model is defined for the phoneme level because speech recognition systems usually work at the phoneme
level and to weigh intelligibility higher than strict phonetically correct pronunciation. As notation for English
phonemes the SAMPA alphabet (Wells, 1997) is employed.

Given knowledge about the non-native’s first language, it is possible to draw further conclusions by com-
paring the phone sets specified by the International Phonetic Association (IPA, 1999) for the non-native’s first
language and the target language. For example, if the correct speech sound is not part of the non-native’s first
language, it is very likely that the learner will have difficulty in producing the sound. If the corresponding
sound is in the common phone inventory, however, the mispronunciation is very likely to be due to the lear-
ner’s unfamiliarity with a word’s admissible phoneme sequence.

8.1. Word mispronunciation model

Let Q ¼ ðq1; . . . ; qMÞ be the phoneme set of the target language and P misð~wÞ the probability of the event that
word ~w consisting of the phoneme sequence p1; p2; . . . ; pN is mispronounced. The mispronunciation probability
(MP) of the ith phoneme in a word is denoted by pm

i , the probability of correct pronunciation by pc
i ¼ 1� pm

i .
The probability qc

j can be interpreted as the degree of pronunciation quality of phoneme qj.
Three possible models for the relationship between the word P misð~wÞ and phoneme MPs pm

i are given in
Table 20. Model (1) assumes, that the probability P misð~wÞ is related to the arithmetic and model (2) to the geo-
metric mean of the phoneme MPs pm

i . Most elaborate is the Markov chain model (3) given in Fig. 8. It assumes
that a word is to be highlighted whenever one or more phonemes are considered mispronounced.

If the phoneme MPs qm
j were given, the MP of an arbitrary word could be calculated easily. However, the

phoneme MP are usually unknown. In the following, a method to estimate the phoneme MPs from word MPs
mispron.word
MPscoring

word

utterances

multiple phoneme
MPmodel

Fig. 7. After scoring a larger number of words, mispronunciation probabilities (MP) of phonemes can be derived from a statistic of
mispronounced words.



Table 20
Models for the relationship between the mispronunciation probability (MP) of a word and the MPs of phonemes

Model Relationship P misð~wÞ
(1) Geometric mean ½

QN
i¼1pm

i �
1
N

(2) Arithmetic mean 1
N

PN
i¼1pm

i

(3) Markov chain 1:0�
QN

i¼1pc
i

/E/
correct

pronun–
ciation

error error error error
detection detectiondetection detection

/k/ /s/

Fig. 8. Mispronunciation and detection process based on a Markov chain. A word is considered mispronounced if one or more of its
phonemes are mispronounced and a mispronunciation is always detected by the system.
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is described. Given the relationship between phoneme and word MPs as defined by each model in Table 20, it
is possible to set up a system of linear equations.

For example, in case of model (2), the equation for the English word ‘‘extra” with the phoneme sequence /E
k s t r @/ would be
P misðextraÞ ¼ 1

6
½P misð=E=Þ þ P misð=k=Þ þ � � � þ P misð=@=Þ�
or in general
P misð~wÞ ¼
1

N

XM

j¼1

qm
j � nj ð21Þ
where nj is the number of occurrences of phoneme qj in word ~w. The MP of a single word ~w can be obtained by
counting its mispronounced vs. all of its occurrences either in the human reference or the automatic word clas-
sification result
P misð~wÞ ¼
# times word ~w is mispronounced

# occurrences of word ~w
ð22Þ
If ~x is the vector of phoneme MPs qm
j for the M target language phonemes, ~b the vector of word MPs

P misð~wÞ and the row elements of matrix A the relative frequencies nj=N for all words, it is possible to set up
a system of the form A~x ¼~b. It only remains to solve the system for~x.

For model (1) it is also possible to obtain a system of linear equations by taking the logarithm on both sides
of the equation
P misð~wÞ ¼
YN
i¼1

pm
i

" #1
N

i.e. the phoneme MPs will be estimated in log-domain.
Finally, the same approach can also be applied to model (3). It is straightforward to transform the equation
P ðmisÞð~wÞ ¼ 1:0� pc
1; . . . ; pc

N ¼ pf
1 þ pc

1pf
2 þ � � � þ pc

1; . . . ; pc
N�1pf

N

defining the relationship between phone and word MPs into
log½1:0� P ðmisÞð~wÞ� ¼
XN

i¼1

log pc
i ¼

XM

j¼1

nj log qc
j
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which is linear in log qc
j . Consequently, the rows of matrix A will be the absolute phoneme frequencies of each

word, and the elements of vector ~x the probabilities qc
i in log-domain.

Usually there are more constraints, i.e. there are more words than phonemes. Consequently, the system will
most often be overdetermined and it is unlikely that an error-free solution of the proposed systems exists.
However, on the other hand, with too less constraints a unique solution would not exist either. A solution with
minimum mean square error between reference and reconstructed word MP can be obtained by solving the
system ATA~x ¼ AT~b.

The proposed models are compared by the correlation between the reference and reconstructed word MPs.
The reference word MP is obtained from the human annotations. The reconstruction of word MPs from the
estimated phoneme MPs is straightforward using the relationships from Table 20.

The evaluation result is shown in Table 21. The correlation is highest for model (3) with a large distance to
models (1) and (2). Model (3) can be considered as quite reliable, since the degree of correlation is comparable
to the inter-rater correlation. The prediction of phoneme mispronunciation probabilities worked best for Jap-
anese and was most difficult for German.

8.2. Phoneme mispronunciation statistics

8.2.1. ATR data

Table 22 shows the phonemes with the highest mispronunciation probability (MP) for each non-native
speaker group when using mispronunciation model (3). A reasonable result are the high MPs for the ‘th’
sounds /T/, /D/ and the r-colored vowel /3‘/, since the phones [h], [ð] and [¯] are not part of any of the
non-native speakers’ first language (cf. Table 23). There is also a high MP for /S/ and /@/. For some non-
native speaker groups (Chinese, Japanese) this is due to the fact that the phones [S] and [E] are not part of
the non-native’s first language. However, mispronunciations may also arise from a speaker’s insufficient
Table 21
Comparison of word mispronunciation models by correlation between initially given and reconstructed word MP (ATR data)

Correlation German French Indonesian Chinese Japanese

(1) Geometric mean 0.34 0.36 0.40 0.45 0.37
(2) Arithmetic mean 0.41 0.46 0.45 0.49 0.49
(3) Markov chain 0.55 0.64 0.67 0.65 0.69

Table 22
Ranklist of mispronounced or misread phonemes for each non-native speaker group (ATR data)

German French Indonesian Chinese Japanese

T [h] 0.28 3‘ [¯] 0.48 S [S] 0.57 T [h] 0.51 T [h] 0.47
3‘ [¯] 0.26 T [h] 0.40 3‘ [¯] 0.47 S [S] 0.49 3‘ [¯] 0.46
j [j] 0.25 @ [E] 0.30 T [h] 0.38 D [ð] 0.34 S [S] 0.35
S [S] 0.25 D [ð] 0.28 tS [�] 0.30 3‘ [¯] 0.34 @ [E] 0.29
aU[af] 0.21 aU[af] 0.25 @ [E] 0.30 aU[af] 0.30 r [¤] 0.27
g [g] 0.17 V [V] 0.24 j [j] 0.27 r [¤] 0.29 l [l] 0.27

Table 23
Consonants and vowels of American English which are missing in each of the non-native’s first language

Group Missing consonants Missing vowels

German [h][ð][¤][w] [e][¯][�][V][A]
French [h][ð][¤][�][h][F] [e][¯][I][�][V][A][f]
Indonesian [h][ð][¤][Z] [e][¯][I][�][V][e][f][O]
Chinese [h][ð][¤][Z][S][v][z][b][d][g][F] [e][¯][�][V][A][e]
Japanese [h][ð][¤][Z][S][v][f][l] [e][¯][I][�][V][A][e] [f][O][E]
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knowledge of a word’s correct pronunciation, e.g. for ‘extra’, ‘box’ and ’bugle’ (cf. Table 24). A further inter-
esting result is the high MP of phoneme /r/ for Chinese, presumably realized as [l], and of phonemes /r/ and /l/
for Japanese, since there is only a phoneme realized as [˙] in Japanese.

The statistic of Table 22 was estimated using the human annotations. However, no human reference will be
available in case of an automatic system. Consequently, it has to be investigated whether a useful mispronun-
ciation statistic can be derived from the automatic word scoring result. Table 25 shows the phonemes with the
highest MP when using the word MPs either calculated from the human reference or from the automatic word
scoring result. The feature set (PhCfRatio) C1, (WLh1) W1, (DurS2) W4, (WPP) C2, (DurS3) W5 was
employed for automatic word classification. For German, French, Chinese and Japanese, the statistics have
three out of five and for Indonesian they have all phonemes in common. The automatic detection of pronun-
ciation errors which are common among all speaker groups regarding the ‘th’ sounds [h][ð] and the r-colored
vowels [e][¯] appears to be most reliable (cf. Table 24).

Further insight into the nature of mispronunciation errors can be gained from a phoneme confusion
statistic. Such a statistic can be obtained by aligning each sentence’s canonical phoneme transcription with
the automatic transcription from phoneme recognition constrained with a bigram phoneme LM. It is
straightforward to calculate a phoneme confusion probability matrix from the phoneme level alignment.
Table 26 shows the phonemes ranked by their confusion probability for each first language group. It is
obvious, that speech sounds which are not part of the non-native’s first language (�) have most often a
high confusion probability.
Table 24
Words with a high mispronunciation probability calculated from the human reference (ATR data)

Word Pronunciation All German French Indonesian Chinese Japanese

Extra [ekst¤E] 1.00 1.00 1.00 1.00 1.00 1.00

Exposure [IkspoSe] 1.00 1.00 1.00 1.00 1.00 1.00

Exam [Igz�m] 1.00 1.00 1.00 1.00 1.00 1.00

Box [bAks] 1.00 1.00 1.00 1.00 1.00 1.00

Mirage [mE¤AS] 0.92 0.71 1.00 0.94 0.94 0.92

Centrifuge [sent¤IfjfdZ] 0.85 0.93 0.86 0.94 0.89 0.72
Bugle [bjfgEl] 0.85 0.64 1.00 1.00 0.89 0.72
Frantically [fr�ntIkli] 0.84 0.79 0.81 0.88 0.67 0.96

Purchase [p¯tSEs] 0.76 0.64 0.94 0.81 0.67 0.76
Rare [¤e¤] 0.75 0.36 0.69 0.75 0.89 0.88

Contagious [kEntedZEs] 0.74 0.57 0.69 0.81 0.83 0.72
Formula [fO¤m j ElE] 0.73 0.79 0.88 0.81 0.67 0.56
Ambulance [�mbjElEns] 0.73 0.64 0.81 0.75 0.78 0.72
Development [dIvelEpmEnt] 0.70 0.36 0.88 0.94 0.67 0.64
Pizzerias [pitseiEz] 0.69 0.36 0.56 0.88 0.78 0.76
Guard [gA¤d] 0.69 0.43 0.75 0.75 0.83 0.68
Colored [kVled] 0.69 0.50 0.81 0.56 0.67 0.84

Chablis [SEbli] 0.69 0.36 0.44 0.88 0.83 0.80

Thursdays [h¯zdez] 0.68 0.50 0.69 0.75 0.67 0.76
Mergers [m¯dZez] 0.67 0.29 0.69 0.81 0.72 0.72

Table 25
Frequently misread or mispronounced phonemes either derived using the human word level annotations or the automatic word scoring
result (ATR data)

Group Human reference Automatic word scoring

German [h] [¯] [j] [S] [aU] /T/,/3‘/,/j/,/S/,/aU/ [¯] [h] [e] [aU] [E] /3‘/,/T/,/@‘/,/aU/,/@/
French [¯] [h] [E] [ð] [af] /3‘/,/T/,/@/,/D/,/aU/ [¯] [h] [E] [e] [f] /3‘/,/T/,/@/,/@‘/,/U/
Indonesian [S] [¯] [h] [�] [E] /S/,/3‘/,/T/,/tS/,/@/ [¯] [h] [S] [E] [�] /3‘/,/T/,/S/,/@/,/tS/
Chinese [h] [S] [ð] [¯] [af] [¤] /T/,/S/,/D/,/3‘/,/aU/,/r/ [h] [¯] [l] [j] [S] /T/,/3‘/,/l/,/j/,/S/
Japanese [h] [¯] [S] [e] [¤] [l] /T/,/3‘/,/S/,/@‘/,/r/,/l/ [¯] [h] [E] [e] [af] /3‘/,/T/,/@/,/@‘/,/aU/
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Moreover, Table 27 shows a selection of phone substitutions derived from this phoneme confusion matrix
for the phoneme mispronunciation statistic from Table 25. The most common mistake for at least four non-
native speaker groups are the confusions [h][s], [S][s], and the confusion of the r-colored vowel [e] with [E][e].
The confusion of [af] with [O][o] is present for three speaker groups. In case of Japanese natives, the confusion
of [¤][l] and the confusion of [E] with [o][i] is a reasonable result, since there are only five vowels realized as [a],
[ m], [e], [i] and [o] in Japanese.

8.2.2. PF-STAR data

Finally, it is investigated, what kind of pronunciation mistakes are most common for German children
reading English sentences from their textbook (PF-STAR data). Estimation of phone mispronunciation prob-
abilities is carried out for the human reference as well as the scoring result. All phonemes except diphthongs
Table 26
Phoneme confusion probability ranking obtained from forced-alignment and phoneme recognition for each non-native accent (ATR data)

Rk German French Indonesian Chinese Japanese

1 �/@‘/[e] �/3‘/[¯] �/3‘/[¯] �/T/[h] �/3‘/[¯]
2 �/3‘/[¯] �/@‘/[e] �/T/[h] �/A/[A] �/@‘/[e]
3 �/A/[A] �/A/[A] /tS/[�] �/@‘/[e] �/A/[A]
4 /U/[f] /aU/[af] �/U/[f] /U/[f] /aU/[af]
5 /aU/[af] �/I/[I] /v/[v] �/3‘/[¯] �/U/[f]
6 /I/[I] �/T/[h] /A/[A] /I/[I] �/I/[I]
7 /d/[d] �/U/[f] /dZ/[dZ] /l/[l] �/T/[h]
8 �/T/[h] �/D/[ð] /z/[z] /aU/[af] �/v/[v]
9 /z/[z] /l/[l] �/@‘/[e] �/v/[v] /dZ/[dZ]

10 /v/[v] /v/[v] /aU/[af] �/D/[ð] �/l/[l]
11 �/D/[ð] �/dZ/[dZ] �/D/[ð] �/z/[z] �/D/[ð]
12 �/{/[�] �/V/[V] �/I/[I] �/d/[d] �/@/[E]
13 /dZ/[dZ] /E/[e] /S/[S] �/@/[E] �/E/[e]
14 /l/[l] /O/[O] �/V/[V] �/V/[V] �/r/[¤]
15 /O/[O] /z/[z] /d/[d] �/S/[S] /z/[z]
16 /tS/[�] /@/[E] /@/[E] �/g/[g] �/{/[�]
17 /g/[g] /d/[d] �/{/[�] �/dZ/[dZ] �/S/[S]
18 �/V/[V] �/r/[¤] �/r/[¤] �/{/[�] /d/[d]
19 /@/[E] �/{/[�] /g/[g] �/r/[¤] /tS/[�]
20 /E/[e] �/tS/[�] �/O/[O] /N/[N] /g/[g]
21 �/r/[¤] /S/[S] �/E/[e] /tS/[�] /O/[O]
22 /t/[t] /g/[g] /l/[l] /O/[O] �/V/[V]
23 /N/[N] /j/[j] /t/[t] /I/[I] /w/[w]
24 /j/[j] /o/[o] /p/[p] /j/[j] /j/[j]
25 /I/[I] /N/[N] /e/[e] /e/[e] �/I/[I]
26 /S/[S] /I/[I] /w/[w] /E/[e] �/f/[f]
27 /u/[u] /e/[e] /j/[j] /t/[t] /t/[t]
28 /i/[i] /i/[i] /o/[o] /w/[w] /N/[N]
29 �/w/[w] /t/[t] /I/[I] �/b/[b] /o/[o]
30 /aI/[aI] /u/[u] /N/[N] /i/[i] /b/[b]
31 /e/[e] /m/[m] /i/[i] /u/[u] /m/[m]
32 /h/[h] /b/[b] /u/[u] /o/[o] /n/[n]
33 /m/[m] /p/[p] /aI/[aI] /aI/[aI] /p/[p]
34 /b/[b] /w/[w] /b/[b] /n/[n] /aI/[aI]
35 /f/[f] /aI/[aI] /m/[m] /h/[h] /e/[e]
36 /p/[p] /f/[f] /f/[f] /m/[m] /h/[h]
37 /o/[o] �/h/[h] /h/[h] /p/[p] /u/[u]
38 /n/[n] /n/[n] /k/[k] /s/[s] /s/[s]
39 /s/[s] /s/[s] /s/[s] /f/[f] /i/[i]
40 /k/[k] /k/[k] /n/[n] /k/[k] /k/[k]
41 /OI/[OI] /Z/[Z] /OI/[OI] /OI/[OI] �/Z/[Z]
42 /Z/[Z] /OI/[OI] �/Z/[Z] �/Z/[Z] /OI/[OI]



Table 28
Frequently misread or mispronounced phonemes derived from the human annotations and the automatic word scoring result (PF-STAR
data)

Human reference Automatic word scoring

0.18 /v/[v] 0.25 /dZ/[dZ]! /S/[S], /tS/[�]
0.16 /dZ/[dZ] 0.25 /T/[h]! /D/[ð], /s/[s]
0.15 /w/[w] 0.21 /S/[S]! /Z/[Z]
0.12 /D/[ð] 0.19 /Z/[Z]! /S/[S]
0.11 /T/[h] 0.18 /3/[�]! /V/[V]
0.11 /@/[E] 0.15 /g/[g]! /k/[k]

Table 27
Phone substitutions derived from forced-alignment and phoneme recognition (ATR data)

German French Indonesian Chinese Japanese

[h]! [s] [¯]! [e] [S]! [s] [h]! [s][z] [h]! [s][t]
[¯]! [o] [h]! [s][t] [¯]! [e] [S]! [s] [¯]! [O]
[j]! [i][I] [E]! [I][o] [h]! [t][s] [ð]! [d] [S]! [s]
[S]! [s] [ð]! [d] [�]! [t] [¯]! [o][f] [e]! [e]

[af]! [o][O] [af]! [o][O] [E]! [o] [af]! [O][o] [¤][l]! [l][¤]
[e]! [E] [e]! [e][E] [e]! [e][E] [r]! [l] [E]! [o][i]
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are considered. Phoneme confusion pairs for phonemes with a high MP are extracted from the phoneme con-
fusion matrix. The result is given in Table 28.

Among the top mispronunciation candidates derived from the word level human annotations are the
phonemes /w/, /D/ and /T/. This is a reasonable finding, since the corresponding speech sounds [w][¯][h]
are not part of the German phone inventory. The automatic statistic has two phonemes in common with
the reference statistic among the top five candidates, /dZ/ and /T/. Further phonemes with a high MP
are /S/ and /Z/.

These examples show that based on the automatically derived phoneme mispronunciation and confusion
statistics, the automatic system would in principle not only be able to provide feedback on mispronounced
phonemes over time, but could also assemble automatically special training sessions for phonemes the foreign
language student often mispronounces.

9. Conclusion

This paper proposes a method for pronunciation scoring, which is independent from the student’s first lan-
guage and can in principle be applied to other target languages. Besides investigating features and methods for
scoring words and sentences, an approach to automatic diagnosis of phoneme mispronunciations based on
word scoring results is presented.

In case of the multi-accent, adult speaker, non-native English ATR database, a likelihood ratio score, the
phoneme recognition accuracy, the phoneme sequence probability and a duration score were the most success-
ful feature combination for scoring sentences. The word posterior probability and phoneme confusion prob-
ability ratio of correctly pronounced and mispronounced words are identified as new word level features.
These two confidence measures together with word likelihood and phoneme recognition accuracy were the
best feature combination.

Scoring the pronunciation quality of sentences was as reliable as the human evaluation. Although
scores obtained by linear feature combination had a higher correlation with the human reference, a more
accurate result was obtained with a single-density Gaussian classifier. Furthermore, it is shown that the
scoring accuracy of the linear classifier can be improved when applying a linear and polynomial
transformation.

The likelihood ratio and the duration features had the highest portability when scoring non-native speech
of German children in the PF-STAR database given a system trained on ATR data only. The same is true for
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the word level. The word likelihood and word posterior probability were most portable. Possible reasons for
the discrepancy are the different data characteristics, adult vs. children, single vs. multi-accented and different
text material.

Promising results for detecting mispronounced words in non-native speech are achieved for both databases:
a class-wise average recognition rate of 72% for the ATR and 67% for the PF-STAR non-native speech data.
It was also shown, that about 90% of the words uttered by natives are classified as correctly pronounced even
if classifier parameters are trained on non-native data only. Perfect detection of mispronounced words (and
phonemes) remains difficult, however, since there is even disagreement about mispronounced items among
human evaluators.

In order to gain more insights about the nature of pronunciation mistakes, a data-driven approach to auto-
matically derive a statistic of mispronounced phonemes from mispronounced words is presented. The relation-
ship between phoneme and word mispronunciation probabilities was investigated by three models. The model
best fitting the data was a Markov chain model, which assumes that a word is mispronounced whenever one or
more of its phonemes is mispronounced. Reasonable results for five non-native accent groups and both dat-
abases are obtained without using any prior knowledge on the first language of the non-native speakers. The
automatically derived information on mispronounced words and phonemes can serve as valuable feedback to
the learner or enable the system to assemble special training sessions.
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